首页 >> 技术资料 >>最新推荐 >> 地球磁场分布-地球周围空间分布的磁场
详细内容

地球磁场分布-地球周围空间分布的磁场

简介

地球磁场(the earth magnetic field)是地球周围空间分布的磁场。它的磁南极大致指向地理北极附近,磁北极大致指向地理南极附近。磁力线分布特点是赤道附近磁场的方向是水平的,两极附近则与地表垂直。赤道处磁场最弱,两极最强。地球表面的磁场受到各种因素的影响而随时间发生变化。

地球磁场由基本磁场、外源磁场和磁异常三部分组成。
基本磁场也叫正常场。占地球磁场的99%以上。基本磁场主要由地核内电流的对流形成.它是一种内源磁场。
外源磁场是起源于地球外部并叠加在基本磁场上的各种短期磁变化。主要有:与太阳黑子活动周期一致的磁变化;日变化,日变化与太阳辐射对高空电离层的影响有关;磁暴

磁异常是地下岩矿石或地质构造受地球磁场磁化后,在其周围空间形成并叠加在地球磁场上的次生磁场。

地球磁场.gif

地球磁层

地球磁场(the earth magnetic field)不是孤立的,它受到外界扰动的影响,宇宙飞船就已经探测到太阳风的存在。太阳风是从太阳日冕层向行星际空间抛射出的高温高速低密度的粒子流,主要成分是电离氢和电离氦。
因为太阳风是一种等离子体,所以它有磁场,太阳风磁场对地球磁场施加作用,好像要把地球磁场从地球上吹走似的。尽管这样,地球磁场仍有效地阻止了太阳风长驱直入。在地球磁场的反抗下,太阳风绕过地球磁场,继续向前运动,于是形成了一个被太阳风包围的、彗星状的地球磁场区域,这就是磁层

地球磁层位于距大气层顶600-1000公里高处,磁层的外边界叫磁层顶,离地面5-7万公里。在太阳风的压缩下,地球磁力线向背着太阳一面的空间延伸得很远,形成一条长长的尾巴,称为磁尾。在磁赤道附近,有一个特殊的界面,在界面两边,磁力线突然改变方向,此界面称为中性片。中性片上的磁场强度微乎其微,厚度大约有1000公里。中性片将磁尾部分成两部分:北面的磁力线向着地球,南面的磁力线离开地球。1967年发现,在中性片两侧约10个地球半径的范围里,充满了密度较大的等离子体,这一区域称作等离子体片。当太阳活动剧烈时,等离子片中的高能粒子增多,并且快速地沿磁力线向地球极区沉降,于是便出现了千姿百态、绚丽多彩的极光。由于太阳风以高速接近地球磁场的边缘,便形成了一个无碰撞的地球弓形激波波阵面。波阵面与磁层顶之间的过渡区叫做磁鞘,厚度为3-4个地球半径

磁极位置

磁北极
(2001) 81.3°N,110.8°W
(2004 估计) 82.3°N,113.4°W
(2005 估计) 82.7°N,114.4°W
地理南极附近
磁南极
(1998) 64.6°S,138.5°E
(2004 估计) 63.5°S,138.0°E

地理北极附近

分布

地球磁场的形成具有一定特殊性,按照旋转质量场假说,地球在自转过程中产生磁场。但是,从运动相对性的观点考虑,居住在地球上的人是不应该感受到地球磁场的,因为人静止于地球表面,随地球一同转动,所以地球上的人是无法感觉到地球自转产生的磁场效应的。通常所说的地球磁场只能算作地球表面磁场,并不是地球的全球性磁场(又称空间磁场),它是由地核旋转形成的。地球的内部结构可分为地壳、地幔和地核。美国科学家在试验中发现,地球内外的自转速度是不一样的,地核的自转速度大于地壳的自转速度。也就是说,地球表面的人虽然感觉不到地球的自转,但却能感觉到地核旋转所产生的质量场效应,就是它产生了地球的表面磁场。科学家在研究中还发现,地核的自转轴与地球的自转轴不在一条直线上,所以由地核旋转形成的地球磁场两极与地理两极并不重合,这就是地球磁场磁偏角的形成原因。

变化规律

科学家们在对地球磁场的研究中发现,地球磁场是变化的,不仅强度不恒定,而且磁极也在发生变化,每隔一段时间就要发生一次磁极倒转现象。早在二十世纪初,法国科学家布律内就发现,70万年前地球磁场曾发生过倒转。1928年,日本科学家松山基范也得出了同样的研究结果。第二次世界大战后,随着古地磁研究的迅速发展,人们获得了越来越多的地球磁场倒转证据。如岩浆在冷却凝固成岩石时,会受到地球磁场的磁化而保留着像磁铁一样的磁性,其磁场方向和成岩时的地球磁场方向一致。科学家在研究中发现,有些岩石的磁场方向与现代地球磁场方向相同,而有些岩石的磁场方向与现代地球磁场方向正好相反。科学工作者通过陆上岩石和海底沉积物的磁力测定,及洋底磁异常条带的分析终于发现,在过去的7600万年间,地球曾发生过171次磁极倒转。距今最近的一次发生在70万年前,正如布律内所指出的那样。
根据地球磁场起源理论,地球磁场磁极之所以发生倒转,是由地核自转角速度发生变化而引起的。地壳和地核的自转速度是不同步的,现阶段地核的自转速度大于地壳的自转速度。然而,40亿年前,情况却不是这样,那时地球表面呈熔融状态,月球也刚刚被俘获,地球从里到外的自转速度是一致的,地球表面不存在磁场。但是,随着地球向月球传输角动量,地球的自转角速度越来越小。同时,地球也渐渐形成了地壳、地幔和地核三层结构。地球自转角动量的变化首先反映在地壳上,出现了地壳自转速度小于地核自转速度的情形。这时,在地球表面第一次可以感受到磁场的存在,地核以大于地壳的自转速度形成了地球磁场。按照左手定则,磁场的N极在地理南极附近,磁场的S极在地理北极附近。地壳与地核自转角速度不同步,这种情形并不能长久地保持下去,地核必然通过地幔软流层物质向地壳传输角动量,其结果是地核的自转角速度逐渐减小,地壳的自转角速度逐渐增大。当地壳与地核的自转角速度此增彼减而最终一致时,地球磁场就会在地球表面消失。地核与地壳间的角动量传输并不会到此为止,在惯性的作用下,地壳的自转角速度还在继续增大,地核的自转角速度继续减小,于是出现了地壳自转角速度大于地核自转角速度的情形。这时,在地球表面就会感受到来自地核逆地球自转方向的旋转质量场效应。按照左手定则判断,新形成的地球磁场的N极在地理北极附近,S极在地理南极附近。从较长的时期看,整个地球的自转速度处在减速状态,但地壳与地核间的相对速度却是呈周期性变化的,这就是每隔一段时间地球磁场就要发生一次倒转的原因。
据测定,地球磁场发生倒转前有明显的预兆,地球的磁场强度减弱直至为零,随后,约需一万年的光景,磁场强度才缓缓恢复,但是,磁场方向却完全相反。地球磁场强度有逐渐减弱的趋势,在过去的4000年中,北美洲的磁场强度已减弱了50%,这说明地核相对地壳的速度差正在缩小。值得说明的是,无论地球表面测得的地球磁场方向如何发生变化,但是,在太空中地球磁场的方向却始终是不变的。因为在太空中测得的地球磁场,是整个地球自转产生的旋转质量场效应,并不会因为地壳与地核相对速度的改变而发生变化。根据左手定则,在太空中测得的地球磁场的N方向始终在地理南极上空。
在电磁感应效应中,通电导体产生的磁场强度与电流强度成正比,即与导体内“定向移动”的自由电子数目成正比。而每个电子的自旋角动量又是恒定的,所以磁场强度实际上是与所有电子的自旋角动量之和成正比。同理,宏观物体产生的磁场强度,也应与旋转质量场的角动量成正比,即与物体的质量和自旋角速度成正比,与质量场的旋转半径(观测点到物体质心的距离)成反比。

在近地球的宇宙空间,地球所形成的空间磁场强度大于地表的磁场强度。空间磁场的最大特点是磁极恒定,不会像地球表面磁场那样发生磁极倒转现象。


旋变测试系统

基于物联网远程监控

机械手应用

技术支持: 吴先生 | 管理登录
seo seo